Project: Connolly Barracks, Longford, Co. Longford

Technical Note: Storm Water System Design

FAO: Longford Planning Authority

Project Ref: 241056 Doc Ref: 241056-MPA-X-X-X-XXX-RP-CE-0002 – TN01 Date: 16/06/25

1.0 INTRODUCTION

1.1 Background

1.1.1 This technical note contains information relating to the design of the proposed stormwater management system for the Existing Connolly Barracks Building, and associated extension, to be provided in accordance with the previously approved Longford County Council Part 8 - No. 129, - *Proposed Re-development of the former Officers Building, Abbeycarton, Longford, Co. Longford, to a multi-purpose community facility, a Protected Structure, situated within the grounds of Sean Connolly Barracks.*

1.2 Site

- 1.2.1 The prosed site is contained within the confines of Sean Connolly Barrack campus, at the Church Street, Longford, Co. Longford.
- 1.2.2 The subject site area of the development is approximately 0.58 Ha, with the catchment area restricted to the existing roof areas of Connolly Barracks building and the proposed extension with local public realm upgrades (0.218 Ha) as shown in **Figure 1.1**.
- 1.2.3 The gradient across the site varies, with the parade square to the East of the building typically found to be flat, with levels varying slightly from 48.87 – 48.75m AOD in a West East direction, and from 49.09 – 48.36m AOD in a North South direction resulting in a 1:80 fall.
- 1.2.4 Agricultural lands form the Western boundary to the site and extend to the Camlin River. Again, the existing ground levels fall towards the Camlin River, from 44.50m AOD at the boundary to Connolly Barracks Campus, to a low of 41.50m AOD.

Martin Peters Associates Consulting Engineers

Ormonde Road, Kilkenny, R95 AHX8 | T: +353 56 7702761 | E: info@mpa.ie | W: www.mpa.ie

n

Technical Note

Figure 1.1-Storm Catchment Layout

2.0 STORM WATER MANAGEMENT SYSTEM

2.1 General

- 2.1.1 As noted previously, it is proposed to upgrade the existing Stormwater Management System to include on site Stormwater storage and outfall to the adjoining Camlin River, all of which is to be provided with the redevelopment, and extension works of Connolly Barracks.
- 2.1.2 The drawings included with the submission are Drawing No.
 - 241056-MPA-X-X-XXX-DR-CE-0130-Propopsed Storm Drainage Layout
 - 241056-MPA-X-X-XXX-DR-CE-0200-Propopsed Storm Long Sections
 - 241056-MPA-X-X-XXX-DR-CE-0300-Propopsed External Works Details

2.2 Existing Services

- 2.2.1 A CCTV survey was carried out by Glancy Enviro of existing sewers to establish the condition and composition of existing services from source at Connolly Barracks to the connection to the site boundary.
- 2.2.2 CCTV survey identified that a combined sewer is in use within the site, which would be typical of a building of this age. It was also established that the majority of the Main line pipework installed consists of clay pipes which have displaced joints, longitudinal cracks and are in generally poor condition.
- 2.2.3 A series on site infiltration testing was completed in April 2024. The testing was scheduled to be completed in accordance with BRE Special Digest 365, which stipulates that the pit should be filled three times and that the final cycle is used to provide the infiltration rate. The time taken for the water level to fall from 75% volume to 25% volume is required to calculate the rate of infiltration.
- 2.2.4 However, following the opening of the test location, the existing ground was found to be saturated with inflow or ground water recorded, which has prevented the completion of onsite testing as indicated within Appendix A.

2.3 Stormwater Management System Design & Route Selection

- 2.3.1 With the refurbishment works, it is proposed to provide gravity sewers on site with outflow controlled via a hydrobrake prior to discharge to the Camlin River. All excess volume is to be stored within an attenuation tank located within the curtilage of the site and in turn discharging to the existing Watercourse to the West of the site.
- 2.3.2 The proposed route to the outfall to the Camlin River was selected to ensure minimal impact on the adjoining lands. The overall drainage required to cross the agricultural lands to the West is seminal in a North South, and East West direction, of some 117 and 122m respectively.

- 2.3.3 The preferred route (N/S) as demonstrated within the enclosed drawings, was selected to minimise the impact on the existing established vegetation and tree line directly to the West of the site which bounds the Camlin River while also avoiding the existing Overhead power lines, stanchions and stay lines adjacent to the river. Therefore, the route of the proposed outfall takes the line of least impact to the adjoining lands.
- 2.3.4 The storm sewer system has been designed in accordance with the Colebrook-White formulas and the Modified Rational Method, where:

 $Q_p = CiA$ and $Q_p = Peak$ Flow (I/s) $C = C_v \times C_r (C_v = 0.75 \& C_r = 1.3)$ i = Rainfall intensity (mm/hr)

Greenfield Run-Off (Qbar)

- 2.3.5 In order to comply with the requirements of Longford County Council, the maximum level of outfall from the new storm water management system will be restricted to replicate the existing green field runoff from the site.
- 2.3.6 The level of outfall from the attenuation system has been calculated in accordance with the Institute of Hydrology Report 124: Flood Estimation for Small Catchments as follows:

Q_{bar} = 0.00108 x Area^{0.89} x SAAR^{1.17} x Soil^{2.17}

Where

Q_{bar} = mean annual peak flood (m³/s)

Area = area of catchment (km²)

SAAR = Standard Annual Average Rainfall (mm)

Soil = Soil index based on Winter Rain Acceptance Potential (WRAP)

- 2.3.7 As noted above, infiltration tests were carried out in April 2025 in accordance with BRE 365 on site groundwater ingress was noted, indicating the site is not suitable for infiltration drainage.
- 2.3.8 The soil type for the area is soil type 2, which was selected based on the Flood Studies Report and the infiltration results. Producing an allowable discharge for the site of 0.8l/s.

- 2.3.9 A detailed site investigation including laboratory testing was carried out on site in April 2025, it identified the subsoil on site to be a firm to stiff slightly sandy slightly gravelly silty CLAY, with high cobble and low to medium boulder content.
- 2.3.10 As the soil has been classified as a CLAY it is clear that the site contains a soil with low to moderate permeability, more akin to soil type 3 rather the soil type 2 as previously assessed.
- 2.3.11 Additionally, a review of the Geological Survey Ireland (GSI) Subsoil Permeability maps shows that the that site is within an area of low moderate Subsoil permeability, as illustrated in **Figure 2.1**.

Figure 2.1 – Geological Survey Ireland – Groundwater Subsoil Permeability

2.3.12 It is also to be note that the Groundwater recharge for the site was assessed using the GSI data base and it identified that the site is located within the low range of 100-150mm/year as shown in Figure 2.2.

Martin Peters Associates

Technical Note

Figure 2.2 - Geological Survey Ireland – Groundwater Recharge

- 2.3.13 Based on the above reviews it can be seen that the classifying the soil on site as soil Type 3 is warranted.
- 2.3.14 From information provided by MET Eireann, SAAR for Longford has been taken to be 977mm and as above the Soil index for the site has been taken as 0.4 for soil type 3 from the Flood Studies Report, The design value of Q_{bar}, for the site, i.e. footprint of the existing and proposed extension to Connolly Barracks, is 1.4l/s as shown in **Appendix B** attached.
- 2.3.15 Therefore, stormwater discharged from Attenuation will be controlled by means of a flow-control hydrobrake with the maximum outflow of 1.41l/s, located downstream of the Storage System.

Attenuation Systems

- 2.3.16 Based on the measured impermeable areas on site and appropriate run off factors, an assessment of the storage volume required on site has been carried out, for the 100-year storm event, as set out within **Appendix C.**
- 2.3.17 The Stormwater Attenuation system is to consist of a sub-terranean geocellular attenuation system, to provide 150m³ of underground storage, as set out within the enclosed 241056-MPA-X-X-X-XXX-DR-CE-0130 Proposed Storm Drainage Layout and 241056-MPA-X-X-XXX-DR-CE-0300 Proposed External Works Details.

2.4 Gravity System

2.4.1 The pipe network serving the development has been designed in accordance with the Modified Rational Method, utilising rainfall data for the Longford area from Met Eireann. The rational design sheet has been included in **Appendix D** of this report.

- 2.4.2 As can be seen from these tables the storm frequency proposed is 1 in 5 years, thereby ensuring an appropriate level of service for the storm drainage system. The time of entry has been taken to be 4 minutes in accordance with Recommendations for Site Development Works. Appropriate pipe roughness coefficients have been taken from the pipe manufacturer's literature.
- 2.4.3 The pipes required to drain the proposed development are between 150mm and 225mm in diameter, all at falls of not less than 1:100.
- 2.4.4 It can be seen in **Appendix D** that all pipes have been designed with adequate capacity and the partial velocities for all pipes are above 0.70 m/s, as per BS EN 752:2008 Drain & Sewer Systems Outside Buildings, thereby ensuring adequate self-cleansing velocities for the entire system.
- 2.4.5 In general pipes will be laid with a minimum cover of 0.9 m in footpath areas, 0.6m in grass areas and 1.2m in roads and trafficked areas. Where it is not possible to achieve this minimum cover pipes will be provided with a 150mm bedded and surrounded in C20 concrete.

3.0 SUMMARY AND CONCLUSION

3.1 Summary

- 3.1.1 This Technical note which has been prepared by MPA Consulting Engineers at the request of our client Longford County Council, and it contains information on the proposed storm water management system and outfall to be constructed with the proposed redevelopment of Connolly Barracks, Longford, Co. Longford.
- 3.1.2 The storm water management system proposed for the development consists of a piped gravity system discharging to an attenuation system, which will discharge through a flow control device to Camlin River.
- 3.1.3 The design value of Qbar for the entire site is 1.4 l/s (i.e. 5.0l/s/hectare), this is based on the site area of 0.28ha, the entire site area and has been calculated in accordance with the Institute of Hydrology Report 124: Flood Estimation for Small Catchments.
- 3.1.4 Based on the above the attenuation volume required for the 100year return period is 150m³ this is to be provided in a large geocellular attenuation area.

3.2 Conclusions

3.2.1 In conclusion the proposed storm water management system is shown to have sufficient capacity, and a connection to the Camlin River can be established, thus ensuring adequate drainage for the proposed development.

Prepared By:

Peter O'Walloy

Checked By:

Peter O'Malley BEng (Hons), MIEI

Eddie Quann BEng, CEng MIEI,

APPENDIX A

Infiltration Testing

		SOAKAWAY TES	<u>ST</u>										
Project Refere	nce:	6489											
Contract name	:	Connolly Barracks	40										
Location:	-	Lonaford, Co. Lonaford											
Test No:		BRE01											
Date:		08/04/2025											
Ground Condit	tions	00,01,2020											
From													
0.00	0 10												
0.00	0.10	MADE GROUND: grev silty sandy g	FOUL.										
0.10	1.05	ADE GROUND: grey sity sandy graver with high cooper content.											
0.20	1.00	cobble content and much red brick f	ragments (4	10%).									
Remarks:													
Archaelogical w	all identified a	at 0.90mbgl within pit - pit terminated	and relocat	ed.									
Elapsed Time	Fall of Water	Pit Dimensions (m)											
(mins)	(m)	Length (m)	2.80	m									
-	-	Width (m)	0.70	m									
-	-	Depth	1.05	m									
_	_	Water											
		Start Depth of Water	-	m									
		Depth of Water	-	m									
			-	m									
		25% Full	-	m									
		25% 1 Ull 75% - 25%	_	m									
		Volume of water (75%-25%)	-	m3									
		Area of Drainage	-	m2									
		Area of Drainage	-	m2									
		Area of Drainage (75%-25%)	-	1112									
		75% Full	-	min									
		25% FUII	-	min									
		Time 75% to 25%	-	min									
		Time 75% to 25% (sec)	-	Sec									
f =	⊒ m/min	or _ m/s											

			SOAKAWAY TES	<u>ST</u>		47							
Project Refere	nce:	6489											
Contract name	:	Conno	olly Barracks	50 /									
Location:		Longfo	ord, Co. Longford										
Test No:		BRE0	2										
Date:		08/04/	2025										
Ground Condit	tions												
From	То												
0.00	0.10	TOPS	PSOIL.										
0.10	0.60	MADE	DE GROUND: grey sandy slightly gravelly silty clay with low cobble										
0.60	0.80	Soft b	ft brown sandy slightly gravelly silty CLAY.										
0.80	2.10	Firm b	prown grey slightly sandy sligh	tly gravelly	silty CLAY	' with medium							
		cobble	e content and occasional sand	and gravel	laminas.								
Remarks:													
Slow water inore	ess at 1.80mb	gl - soi	Is saturated and unsuitable for	^r soakawav	design.								
Elapsed Time	Fall of Water		Pit Dimensions (m)		3								
(mins)	(m)		Length (m)	3.00	m	1							
_	_		Width (m)	0.70	m	1							
			Depth	2 10	m								
			Water	2.10									
			Start Dopth of Water		m								
			Dopth of Water	-	m								
		ŀ		-	111								
		-		-	m								
		ŀ	25% FUII	-	m								
		ŀ	75%-25%	-	m m2								
		- I	Volume of water (75%-25%)	-	m3								
			Area of Drainage	-	m2								
		I	Area of Drainage (75%-25%)	-	m∠								
			75% Full	-	min								
				-	min								
			Time 75% to 25%	-	min								
		l	Time 75% to 25% (sec)	-	sec]							
f =	⊒ m/min	or	= m/s										

APPENDIX B

Q-Bar Calculation Sheets

	Project:	Calc. Sheet No.	Martin Peters Associates
	Connolly Barracks, Longfod, Co. Longford	Page 1 of 1	Consulting Engineers
		Calculations by	Ormondo Bood
		Calculations by	Official Koad
	Project No:	POM	Kilkenny
	241056	Checked by	R95 AHX8
		EJQ	T: + 353 56 77 02761
-	Drawing rof	Data	E: info@mna io
	241056-MPA-X-X-X-DR-CE-0130	16.05.2025	vv: www.ilipa.ie
	QBAR	RURAL	
<u>Design Data:</u>			
	Station Name:	Longford	
	Standard Average Annual Rainfall (SAAF	२) ∙ 977	mm
	etandara / trenage / tintaar tannan (e/ v t		
<u>Catchment Details:</u>			
	2	,817 m ²	
	Catchment Data: 0.	2817 Ha	
	0.0	02817 km²	
	0.0		
	Catchment Area:	0.5 km ²	
		o.o km	
	Note: 50 hectares to be used for small ca	atchments < 50Ha	
<u>Soil Index (G):</u>			
	Soil Type		
	Refer to Winter Rain Accentance Potenti	al Man	
	Proposed Area Under Soil Type 1	g ₄ = 0.0	
	Droposed Area Under Seil Type 2	g = 0.0	
	Proposed Area Onder Soli Type 2,	g ₂ – 0.0	
	Proposed Area Under Soil Type 3,	g ₃ = 1.0	
	Proposed Area Under Soil Type 4,	q ₄ = 0.0	
	Proposed Area Under Soil Type 5	g = 0.0	
	Toposed Area Onder Soli Type 5,	95 - 0.0	
	Classified Area (g)	1.0	
		1.0	
	Soil Index (G) = $0.15a_1 \pm 0$	$30a_{2} + 0.40a_{2} + 0.45a_{3} + 0.50a_{4}$	
			_
		Classified Area (g)	
	Soil Index (G) =	0.40	
QBAR rural:			
	Mean annual flood OBAR from catchmer	nt characteristics for small rural	
	$(< 25 \text{ km}^2)$ from the "Elood	estimation for small catchments	
	Benert No. 124" published by the Institu	to of Hydrology	
	Report No. 124, published by the institut	le of Hydrology	
	$OBAP = 0.00108 (APEA^{0.89})$	Y SAAP ^{1.17} Y SOII 2.17)	
	QDAN rural - 0.00100 (ANEA	X SAAR X SOLL)	
		-	
Site Specific Data:	QBAR rural 5.0 L/sec/Ha	(Based on 50 Ha)	
	OP		
	UK		
		-	
	QBAR rural 2.0 L/sec/Ha	1	
		-	
	whichover is greater, as per CDSDS Teb	lo 6.2 Critorion 4.2 whore maximum d	isobarga rata of
		ne 0.5, Chlenon 4.5 where maximum d	
	QBAR of ZI/s/na for all attenuation storag	je where separate "long term" storage	cannot be
	provided.		
Summary			
<u>Summary:</u>			
	QBAR _{rural} 5.0 L/sec/Ha	1	
		_	
		1	
	L/Sec		

APPENDIX C

Attenuation Storage 100-year

	Project: Connolly Barracks, Longfod,	Co. Longford	Calc. Sheet No. Page 1 of 1	Martin Pete Consult	ers Associates ing Engineers					
m			Calculations by		c	ormonde Road				
	Project No:		POM		Kilkenny					
	241056		Checked by		R95 AHX8					
			EJQ		T: + 35	53 56 77 02761				
	Drawing ref.		Date		E	: info@mpa.ie				
	241056-MPA-X-X-X-DR-CE-0)130	16.05.25		N	: www.mpa.ie				
	4	ATTENUATION	DESIGN -							
Decian Deter										
Design Data.	Station Namo:	Longford								
		Longioru								
	Annual Nainiail.	511								
Allowable Outflow:										
	Outflow (O) =	1.4	Litres / sec							
	Refer to Enclosed Qbar C	alculations								
	Discharge rate is in accord	aance with GDSDS C	nterion 2.1 River	Regime Protection	ז					
<u>Catchment Details :</u>										
	Total Area =	2451	(m ²) @]						
	Destaur	1011	(m ²)	0.5%	1					
	Roof Area =	1914	(m ²) @	95%	-					
	Road/Hardstanding =	537	(m) (m^2) (m^2)	80%	-					
	Permeable Paving =	0	(m^2)	20%	-					
	Open Area =	U	(m) @	5%	1					
			2248	m ²	1					
	Effective Area of Catchn	nent (A)	0.2248	ha						
					-					
<u>Rainfall Data :</u>										
	Return Period (Yrs)	100 year								
	Storm Duration (D)	Rainfall (R)								
	(min)	(mm)								
	15	21.0	1							
	30	28.0								
	60	34.0								
	120	42.0	_							
	240	50.0								
	360	59.0								
	720	72.0								
	1440	85.0								
	2880	100.0								
Inflow Volume Equation :										
Storm Duration (D)	Rainfall (R)	Intensity	Inflow (I)	Outflow (O)	Storage Req'd (S)					
(min)	(m³/ha)	(mm/hr)	(m ³)	(m ³)	(m ³)					
15	273	92.40	61	1	60					
30	364	61.60	82	3	79					
60	442	37.40	99	5	94					
120	546	23.10	123	10	113					
240	650	13.75	146	20	126					
360	767	10.82	172	30	142					
720	936	6.60	210	60	150					
1440	1105	3.90	248	121	127					
2880	1300	2.29	292	242	50					

Rainfall (R) inclues a 10% provision for climate change as per GDSDS

GDSDS; Site critical duration storm to be used to assess attenuation storage volume, which satisfies Criterion 2.1 for River Regime Protection

Attenuation Volume Required 150 m³

APPENDIX D

Storm Sewer Design Sheets

mp	d	Project: Connolly Barracks, Longfod, Co. Longford Project No: 241056 Drawing Ref. 241056-MPA-X-X-DR-CE-0130						Calc. Sheet No. Page 1 of 1 Calculations by POM Checked by EJQ Date 16.05.2025							Martin Peters Associates Consulting Engineers Ormonde Road Kilkenny R95 AHX8 T: + 353 56 77 02761 E: info@mpa.ie W: www.mpa.ie					
SURFACE WATER NETWORK SCHEDULEDesign Data:Pipe MaterialPVCM5-2min3.3Effective Roughness (Ks) =0.06Design Return Period511Time to Entry411																				
US MH Ref:	US MH CL [mod]	US MH IL	DS MH IL	Length	Gradient	Pipe Diameter	Cover to US Soffit	Velocity	Time of Flow [min]	Time of Conc. [min]	Rate of Rainfall	Total Area	% Imperv.	Imperv. Area	Cumul. Imperv. Area	Actual Rate of Flow	Allow. Rate of Flow	Proportional Capacity	Proportional Velocity	Design Velocity
S1.0 S1.1 S1.1 S1.2 S1.2 S1.3 S1.3 S1.4 S1.4 S1.5 S1.5 S1.6 S1.6 S1.7 S1.7 ATT ATT S1.8 S1.9 S1.10 S1.10 S1.11 S1.10 S1.11 S1.2 S1.10 S1.10 S1.11 S1.10 S1.11 S1.10 S1.11	49.10 49.10 48.90 48.60 48.11 47.63 47.35 47.00 46.05 46.05 44.09 42.09 41.71 48.10 47.40	48.55 48.10 48.04 47.79 47.02 46.57 46.02 45.60 44.56 44.56 44.54 42.84 40.84 40.62 47.55 46.46	48.10 48.04 47.79 47.02 46.57 46.02 45.60 45.56 44.54 42.84 40.84 40.62 40.40 46.46 46.02	45 6 10 23 16 19 17 1.6 1.6 46 80 22 21.7 38 44	100 100 40 30 35 35 40 40 100 27 40 100 100 35 100	150 150 225 225 225 225 225 225 225 225 225 2	0.400 0.850 0.710 0.585 0.862 0.839 1.101 1.176 1.266 1.282 1.025 1.025 0.865 0.400 0.786	1.26 1.26 2.03 3.05 2.82 2.82 2.63 1.63 3.22 2.63 1.63 1.63 1.63 1.63 1.63 1.63	0.597 0.080 0.082 0.126 0.095 0.112 0.108 0.010 0.016 0.238 0.507 0.225 0.222 0.290 0.584	4.597 4.080 4.082 4.126 4.095 4.112 4.108 4.010 4.016 4.238 4.507 4.225 4.222 4.290 4.584	74 78 78 77 78 77 77 78 78 78 78 77 75 77 77 77 77	456 116 0 93 1358 76 352 0 0 0 0 0 0 4 REF! 150 202	100 100	456 116 0 93 1358 76 352 0 0 0 0 0 4 REF! 150 202	456 572 572 665 2023 2099 2451 2451 2451 2451 2451 2451 2451 #REF! 150 352	0.009 0.012 0.012 0.014 0.042 0.044 0.051 0.052 0.052 0.052 0.001 0.001 0.001 0.001 0.003 0.007	0.022 0.022 0.036 0.121 0.112 0.112 0.105 0.105 0.105 0.105 0.065 0.065 0.065 0.039 0.022	0.41 0.54 0.33 0.11 0.38 0.39 0.49 0.50 0.80 0.01 0.01 0.02 0.02 0.02 0.02	1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1	1.19 1.30 1.79 2.04 2.58 2.61 2.64 2.65 1.78 0.70* 0.70* 0.70* 0.70* 1.22 1.09
S3.0 S3.1 S3.1 S1.4	49.10 49.10	48.55 47.79	47.79 47.02	38 44	50 57	150 150	0.400 1.160	1.81 1.68	0.350 0.436	4.350 4.436	76 75	1268 90	100 100	1268 90	1268 1358	0.026 0.028	0.032 0.030	0.81 0.93	1 1	1.98 1.92

Notes: